
Model Driven Production of User Interactions

For Web Applications

Bassem KOSAYBA
Department of Software Engineering & Information Systems

Damascus University, Syria

script.java@gmail.com

Abdel Azziz Backkour
5th year Student – Albaath University, Syria

Abstract - A form-based service is one in which the

flow of data between service (business logic) and user interface

is described by a sequence of query/response interactions

(forms in HTML), where the interaction (form in HTML)

provides a user interface that presents service data to the user

(such as a list of foods) then collects information from a user

(the selected food) and passes it to the service.

Here we are going to provide a simple framework to

develop form-based services in a device-independent manner.

In this framework we focus on abstraction of the form (user

interaction) in a way allowing us to separate the service logic

from user interface description.

In order to realize our goal we present a “model-

driven framework”. We determine two types of information.

Information describes the specification of the user interaction

(form) and information describes the method of using these

forms to develop the whole application.

To achieve that we produce two tools. The first tool

allows the user interface designer to specify abstractly the form

elements. The second one allows the application developer to

load form specifications in order to build a service logic

program specific to these forms. After binding the outputs of

these tools we will have an application abstract model. Starting

from this model, we can generate the whole application. This

application could be a VoiceXml application, a traditional web

application, a WAP application or others.

Keywords – Abstract User Interface, (MDE) Model Driven
Engineering, Meta-modeling, Web Application Framework.

I. INTRODUCTION

In this paper, we develop a framework to

standardize the web development domain independently of

technologies or devices. For example, developers can write a

single server-side program that can be used to display stock

quotes on the web or read-back stock quotes over the phone.

This program would use the same business logic code for

getting the quotes, but would have code for two user

interfaces one for speech and one for HTML. Also, the

developed application can be oriented to traditional desktop

browsers or to hand-held devices.

Indeed, we use MDE (Model Driven Engineering)
approach to realize our framework. MDE is a new

application development approach aims to automate the use

of models in order to build systems. In our work, we have

used meta-models to separate between two basic domains:

the interaction design specification domain and the service

logic domain. The interaction specification domain includes

the concepts permitting the definition of the form elements

and their attributes. The service logic domain permits to

apply control instructions (if, while, GetField, SetLabel,

SetField etc.) on interactions in order to define the
application logic.

Actually, we give our framework users two

graphical tools. The first tool allows the user interaction

designer to determine his/her user interfaces elements and

the another one allows the application programmer to load

the interaction specifications in order to build an application

specific to these interactions. This control program binds the

different interaction attributes with the control flow

concepts (if, while, etc.) using binding concepts (condition,

and, getField, setField, setLabel … etc).

Our paper will present in section 2 our objectives and
approach. Section 3 explains the framework implementing

our approach. Section 4 gives a case study to show how to

use our framework. Section 5 gives some conclusions and

future visions.

II. OBJECTIVES AND APPROACH

We can easily remark that the application

programmer needs to know about interaction specifications

in order to build his/her application. Also, the interaction

designer will not necessary being the end user and anyone

else can reuse these interactions (forms). So, we suggest the
separating between the interaction specification domain and

the logical service programming domain.

Furthermore, we think to use models in order to

organize the development of the web application. Models

are abstractions of systems. High levels of abstraction allow

easier understanding and handling of systems. Moreover,

new approaches like the MDE (Model Driven Engineering)

[3] aim to automate the use of models. MDE encourages the

identification and the separation between the different

system concerns. MDE structure the application

development in several models and model transformations.

In MDE framework, we specify a meta-model for each
system aspect. So, we can design separately the system

mailto:script.java@gmail.com

different concerns through the definition of system models

[4]. After that, the MDE framework builds the system

through the model transformations [6]. These

transformations permit the integration of system different

concerns. The main idea of MDE approach is to use the

models at different levels of abstraction. After that, the

MDE process specifies a sequence of models and defines

how to go starting from a model to another model [5].

Briefly, MDE allows us to specify a methodology for

defining problems and how to go towards solutions.

Moreover, MDE allows us to capitalize the problem
specifications. The problem specifications are the models

used in MDE process. Also, MDE allows us to capitalize the

know-how to go from the specification to the solution. The

know-how specifications are the model transformations used

in MDE process. The model transformation defines clearly

the rules that permit to go from model to another.

Figure 1 shows this framework’s three meta-

models and their relations. The first meta-model specifies

the interaction domain (form elements …), the second

specifies the control instructions which can be applied in

order to build a user interaction sequence and the third binds
between the interaction concepts and the control concepts.

Figure 1: FRAMEWORK META-MODELS

III. FRAMEWORK IMPLEMENTATION

In order to implement the already presented

framework: we have to specify the three meta-models

presented in the figure 1 (i.e. their concepts and relations).

Also, we have supported these meta-models by graphical

tools. We have used the framework presented in [1] [2] in

order to produce these tools. This framework [1] [2]

produces graphical modeling tools starting from meta-
models. These graphical tools allow the users to define

models conform to the meta-models used to produce them. In

the following sub-sections, we will present in details the

three meta-models of our control framework and the

produced graphical tools.

A. Interaction meta-model

Figure 2 shows the interaction meta-model. Up to

now, we just need to know the interaction elements. These

concepts enable the interaction designer to define the model

that specifies an interaction with users.

Figure 2: PAGE META-MODEL CONCEPTS

The interaction producer can use instances of the

concept “Field” in his/her interaction model in order to take

information from the user. The interaction producer can use
instances of the concept “Label” in order to give the user

some information.

We can specify several types of “Field” as

“CheckButton”, “RadioButton” etc. Also, we can specify

several types of “Label” as “Image”, “Sound”, “Video” etc.

Until now, we focus on the general organization of

our framework. After several real experiences using this

framework, we can strictly specify all the concepts

necessary to define the interaction models as the element

position, color, etc.

Starting from this interaction meta-model, we have
automatically produced the graphical tool presented in

Figure 3. This tool is useful for the “interaction producer”,

it allows him/her to specify user interaction(s) in a standard

way. We have used the framework presented in [1] [2] to

produce such tools. This framework starts from two models:

the first describes the application domain and the second

describes the desired graphic model. Furthermore, the

produced tools are compatible with the MOF (Meta-Object-

Facility) [7] and can interact with the repositories produced

by the ModFact project [8].

Control

Meta-model

Interaction

Meta-model

include

User
Interaction

Name

Label
Name
Value

Field
Name
Value

Binding

Meta-model

while

Control

if

Figure 3: A GRAPHICAL TOOL FOR THE USER INTERACTION

PRODUCER

A model defined using this tool describes the

elements of an interaction. This model can be exported as

XML file. This file will be used by the application

programmers who use our web framework. These
programmers have not to know XML language in order to

develop the application because we have produced another

graphic tool that help them as we will see in the sub-section

C.

B. Control meta-model

Figure 4 shows the control meta-model. In this meta-

model, we specify the principal concepts of control

instructions (if, while, getFeild, setField, setLabel etc.).

These concepts are needed by the application programmer in

order to define the user interaction sequence.

Figure 4: CONTROL META-MODEL CONCEPTS

The Concept “Control” is abstract. We have
specified it in the meta-model in order to be able to define

nested “control” instances. The meta-model’s two principal

control concepts are: “if” and “while”. These concepts

inherit from “Control” concept. An instance of “if” can be

used by the application programmer in order to choose

between two user interactions according to the given

response in a pervious user interaction. An instance of

“while” can be used by the application programmer to

repeat a user interaction until the user give a predefined

value.

 We have not produced a graphical tool starting

from this meta-model because there is no need to create a

control model independently of specific user interactions.

C. Binding meta-model

A web application model binds between the user

interaction model elements and the control elements. The

relations that enable this binding are specified in the

Binding meta-model. Figure 5 shows a part of the Binding

meta-model. In this part, we have defined the concept

“Logic” that defines a logical relation between two

interaction fields. There are two type of the “Logic”
concept: “Or” and “And” concepts. Also, we add a relation

“Logic” between the interaction fields. This relation permits

to create a complex field from several simple fields using

instance of the “Logic” concept. Also, we have specified the

“Condition” relation between the “Control” concept and the

“Field” concept. This relation is inherited by the concept

“if” because this latter inherits from the “Control” concept.

We have defined an attribute of type “Then” for the concept

“if”. An instance of "Then" permits to choose an instance of

“Interaction” and several instances of

"InteractionCommand" in case the “condition” instance

related to an “if” instance has been verified. We have
defined in the same way the “Else” attribute for the “if”

concept. This attribute can be used in case the “condition”

instance related to the “if” has not been verified, but we did

not show it in the figure 5 to still clear. The "Interaction

Command" concept permits to specify actions that can be

applied on the 'interaction' instance chosed in an instance of

"Then" or "Else". In the same way, we can defined the

relations between the control meta-model concept “while”

and the interaction meta-model.

Figure 5: BINDING META-MODEL CONCEPTS

Starting from the binding meta-model we have

automatically produced a modeling graphical tool. This

graphical tool enables the “application programmer” to

load several user interaction models and to create a user

interaction sequence. Figure 6 shows the produced tool.

Figure 6: A GRAPHICAL TOOL FOR APPLICATION

PROGRAMMER

A model defined using this tool represent an

application program model specific to several user

interactions. This model can be exported as XML file. The

content of this file is abstract (i.e. independent of execution

technologies or devices).

In fact, the graphical tool presented in figure 6

assists the model transformation process needed to bind the

interactions models and the control model. We would refer

here that we were able to produce this binding tool because

we have defined the binding concepts as a meta-model.

D. Application Code Generator

We have developed a template for each concept of

the interaction meta-model. Also, we have developed several

groups of templates. Each group of templates accords for

each execution technology (traditional WEB application,

WAP application, voiceXML application, etc.) supported by

the code generator. The code generator understands the
logical structure of the application model. It uses this model

information to configure and connect the templates

according to the application model and for a specific

technology.

IV. EXPERIMENT

In order to explain how to use our control

framework, we present here a common case study. This case
study implies two interactions : Login and Welcome.

Simply we have two interactions the first one called "Login".

It consists of two labels: "username" & "password", and two

fields: "nameFiled" & "passwordField".

The second interaction called "Welcome" it consists of two

labels: the value of the first is "Hello" & the value of the

second is the username entered by the user in the "Login”
interaction.

Figure 7: A LOGIN INTERACTIOON

Control

Logic

And

2

Field *

If

Condition
*

1

Interaction

1

Then

Interaction

Command

Else

setField

1 1 * *

Logic

Or

setLabel

getField

Figure 8: A WELCOME INTERACTIOON

The interaction producer can use the interaction

editor tool in order to specify these interaction elements as it

is shown in Figure 7 and Figure 8. After that, he/she can

export this specification as an XML file and distribute this

XML file to the persons who want to program an application
using these interactions. Simplified formats of these

specifications are shown in the figure 9 and Figure 10.

Figure 9: LOGIN SPECIFICATION USING THE INTERACTION

EDITOR

Figure 9: LOGIN SPECIFICATION USING THE INTERACTION

EDITOR

Let’s suppose that one wants to use our web

framework in order to program an authentication web

application. So, he/she must load the figure 9 login

specification and the figure 10 welcome specification in the

application programming editor. After that, he/she uses the

application programming editor to specify graphically his/her

application program. Then, he/she exports his/her application

program as XML file. After that this file will be used to

generate the whole application and in the desired technology.

V. CONCLUSION AND PERSPECTIVES

We use MDE (Model Driven Engineering)

approach to organize the definition of form-based

applications. We provide a framework that includes several

models and transformation process. Furthermore, we support

this framework by graphical tools necessary to define the

needed models and a graphical tool to bind the control

models and the interaction models, this configuration give us

a standard way in building abstract web application models.

These models are independent of execution technologies and
devices.

We used a code generator in order to produce the application

files. The code generator understands the logical structure of

the application model. It uses this model information to

configure and connect the pre-built templates according to

the desired technology.

VI. A CKNOWLEDGEMENTS

Finally, we would like to thank Dr. Malek ALI for his

help that facilitates our work and that allows us to begin this

research in the Albaath University.

REFERENCES

[1] Bassem Kosayba, “A framework for Model Driven Production of

Graphic Modeling Tools”, IEEE ICCTA, Damascus, Syria, April
2006.

[2] Bassem Kosayba, Raphael Marvie, Jean-Mark Geib, “Model Driven

Production of Domain-Specific Modeling Tools”, In 4th OOPSLA
Workshop on Domain-Specific Modeling (DSM’04), Vancouver,

Canada, October 2004.

[3] S. Kent, “Model Driven Engineering”, Third International
Conference on Integrated Formal Methods – 2002.

[4] Jean BEZIVIN. “On the Unification Power ofModels. Software and

System Modeling”, 4(2) :171–188, 2005. http://www.sciences.univ-
nantes.fr/lina/atl/www/papers/OnTheUnificationPowerOfModels.pdf.

[5] Marten J. VAN SINDEREN Giancarlo GUIZZARDI, Luis Ferreira

PIRES. “On the role of Domain Ontologies in the design of Domain-
Specific Visual Modeling Languages”. In The Second Workshop on

Domain-Specific Visual Languages at OOPSLA, Seattle, WA, USA,
November 2002. http://www.cis.uab.edu/info/OOPSLA-

DSVL2/Papers/Guizzardi.pdf.

[6] Jean BEZIVIN. “From Object Composition to Model Transformation
with theMDA”. In TOOLS’USA, Volume IEEE TOOLS-39, Santa

Barbara, August 2001. http://www.sciences.univ-
nantes.fr/info/lrsg/Recherche/mda/TOOLS.USA.pdf.

[7] OMG (Object Management Group), http ://www.omg.org/. ”Meta

Object Facility (MOF) Specification”, March 2000.
http://www.omg.org/cgi-bin/apps/doc?formal/01-11-02.pdf.

[8] “ModFact Project”. http://modfact.lip6.fr

http://www.sciences.univ-nantes.fr/lina/atl/www/papers/OnTheUnificationPowerOfModels.pdf
http://www.sciences.univ-nantes.fr/lina/atl/www/papers/OnTheUnificationPowerOfModels.pdf
http://www.cis.uab.edu/info/OOPSLA-DSVL2/Papers/Guizzardi.pdf
http://www.cis.uab.edu/info/OOPSLA-DSVL2/Papers/Guizzardi.pdf
http://www.sciences.univ-nantes.fr/info/lrsg/Recherche/mda/TOOLS.USA.pdf
http://www.sciences.univ-nantes.fr/info/lrsg/Recherche/mda/TOOLS.USA.pdf

